message exchange protocol - Definition. Was ist message exchange protocol
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist message exchange protocol - definition

Message Exchange Pattern; Message pattern; Message exchange pattern; Message Exchange Patterns; Messaging patterns

WIP message         
COMPUTER NETWORK PROTOCOL
WIP Message
WIP message is a work-in-progress message sent from a computer client to a computer server. It is used to update a server with the progress of an item during a manufacturing process.
message passing         
MECHANISM FOR INTERPROCESS COMMUNICATION
Message passing programming; Message Passing; Message-based protocol; Message-passing; Message-based; Message (object-oriented programming); Asynchronous message passing; Synchronous message passing
One of the two techniques for communicating between parallel processes (the other being shared memory). A common use of message passing is for communication in a parallel computer. A process running on one processor may send a message to a process running on the same processor or another. The actual transmission of the message is usually handled by the run-time support of the language in which the processes are written, or by the operating system. Message passing scales better than shared memory, which is generally used in computers with relatively few processors. This is because the total communications bandwidth usually increases with the number of processors. A message passing system provides primitives for sending and receiving messages. These primitives may by either synchronous or asynchronous or both. A synchronous send will not complete (will not allow the sender to proceed) until the receiving process has received the message. This allows the sender to know whether the message was received successfully or not (like when you speak to someone on the telephone). An asynchronous send simply queues the message for transmission without waiting for it to be received (like posting a letter). A synchronous receive primitive will wait until there is a message to read whereas an asynchronous receive will return immediately, either with a message or to say that no message has arrived. Messages may be sent to a named process or to a named mailbox which may be readable by one or many processes. Transmission involves determining the location of the recipient and then choosing a route to reach that location. The message may be transmitted in one go or may be split into packets which are transmitted independently (e.g. using wormhole routing) and reassembled at the receiver. The message passing system must ensure that sufficient memory is available to buffer the message at its destination and at intermediate nodes. Messages may be typed or untyped at the programming language level. They may have a priority, allowing the receiver to read the highest priority messages first. Some message passing computers are the {MIT J-Machine (http://ai.mit.edu/projects/cva/cva_j_machine.html)}, the {Illinois Concert Project (http://www-csag.cs.uiuc.edu/projects/concert.html)} and transputer-based systems. Object-oriented programming uses message passing between objects as a metaphor for procedure call. (1994-11-11)
Message Send Protocol         
COMPUTER NETWORK PROTOCOL
Message send protocol; Message Send Protocol 2
The Message Send Protocol (MSP) is an application layer protocol used to send a short message between nodes on a network. The original version of the protocol was published in 1990.

Wikipedia

Messaging pattern

In software architecture, a messaging pattern is an architectural pattern which describes how two different parts of an application, or different systems connect and communicate with each other. There are many aspects to the concept of messaging which can be divided in the following categories: hardware device messaging (telecommunications, computer networking, IoT, etc) and software data exchange (the different data exchange formats and software capabilities of such data exchange). Despite the difference in the context, both categories exhibit common traits for data exchange.